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Abstract

A two-dimensional variable Yee’s mesh algorithm with
reduced grid size is proposed for the full-wave analysis of
arbitrarily shaped guided wave structures. The method includes
losses and allows the frequency selective application of the
FDTD method. The continuously variable mesh size in x- and y-
direction makes it possible to resolve partially fine circuit
structures in both dimensions, while in other circuit sections a
coarse mesh size can still be used.

Introduction

The TDFD has been well established as a versatile full-
wave technique to solve electromagnetic field problems [1-13].
Although the method has many attractive features for time
domain problems, a very fine mesh size must be used in order to
resolve the non-uniform fields in MICs or MMIC's. Fine mesh
sizes on the other hand, lead to excessive computer memory and
run-time, which renders this method not very effective in the
frequency selective design of microwave circuits.

In order to alleviate the extensive CPU-time requirements
of the TDFD (at least on workstations and serial machines),
different forms of graded meshes were used in the past with
variable success. The basic problem in utilizing any grading
scheme is that the larger the mesh ratio, the higher the time-
domain errors which lead to significant errors in the frequency
domain, since the Fourier transform is very sensitive to errors in
the time domain impulse.

Two different ways of grading a TDFD mesh were
proposed so far. Hoefer et.al. [10] introduced a grading scheme
in which the mesh size in y-direction was different from that in
x-direction but the mesh size were kept constant in either
direction (Fig.1b). Zivanovic et.al. [13] recently published a
subgridding method in which sections of the overall mesh
contained a fine mesh size. The mesh size within as well as
outside this section were also kept constant (Fig.1c). The
common feature of both grading schemes is that the mesh size is
regionally constant.

In this paper we are analyzing a third grading scheme
which is gradually changing its mesh size in either x- or y-
direction or in both directions simultaneously (Fig.1d). This
grading scheme is generally rejected by other researchers in this
field because the time domain error introduced is of first order
and it was not possible so far to reduce this error to second
order. In spite of this fact, the variable mesh scheme has been
utilized in [9]. Without improving the algorithm, the authors of
[9] stated that the variable grading scheme can be used without
significant errors. This statement is not justified, because the
error in this method is still of first order and the results reported
in that paper were found by using a very small mesh ratio. So it
is not surprising that the results obtained with a variable mesh
size are close to the ones obtained with a uniform mesh size.
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The scheme presented in this paper utilizes the variable
grading mesh shown in Fig.1d, but improves the accuracy from
first order to second order by analytical cancellation of the first
order error term. Furthermore, this paper also introduces a
scheme to use the time domain solution procedure of the FDTD
for frequency selective applications of this method.

An adaptive mesh algorithm with second order
accuracy

In order to demonstrate this new idea and to keep the problem
simple, we first of all assume a uniform mesh along the z-
direction without loss of generality. The z-direction can be easily
implemented into this scheme. In each mesh cell the magnetic
field components can always be arranged in the centre (central
finite difference) and a second order accuracy can be maintained
throughout when calculating H-components from the E-
components. However, in the variable grading mesh the E-field
(E2 in Fig.2) is not located in the middle between H1 and H2
and therefore calculating the E-field from the H-field leads to a
first order error. This is illustrated by looking into the
expression for the Ex-field as an example:
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Developing the x-dependent term in this equation by a Taylor
series yields:
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which clearly shows that normally a variable grading scheme
provides only first order accuracy.

However, by including the three neighbouring mesh cells, it is
possible to eliminate the first order error term, and a second
order accuracy is obtained.
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dj (=1, 2,...,N) is time independent and fixed for a specific
mesh arrangement. The first and second terms in the bracket of
the above equation have been calculated in the neighbouring
equations and therefore, the new algorithm requires no more
computations than the algorithm in (1a).

Frequency selective FDTD with adaptive mesh
size

The application of the FDTD for frequency selective
circuit analysis and design requires significant computer
resources. This is so because processing a time domain impulse
involves from the start the entire frequency spectrum. Only after
the processing, the frequency spectrum of interest is selected.
This requires not only significant CPU-time, but also memory
since, up to now, any full-wave analysis with the FDTD
requires a three-dimensional mesh. Although this is generally a
disadvantage of the FDTD, the flexibility of the method in terms
of its suitability to analyze arbitrary geometry sometimes
outweights the demand for significant computer resources.

In this part of the paper we introduce a frequency
selective FDTD algorithm with only a half-size two-dimensional
mesh. This technique preserves the advantageous features of the
conventional FDTD, but it can only be used in the frequency
domain, and is therefore very attractive for CAD of MIC's and
MMIC's.

This new technique uses only a two-dimensional mesh
consisting of a three-dimensional space grid for the analysis of
hybrid modes. This two-dimensional mesh could also be
regarded as one slice out of a three-dimensional mesh, with the
third dimension, the propagation direction, being replaced by
introducing a phase shift. This step allows also to reduce the size
of the space grid to only half of it's normal size. At a first
glance, introducing a phase shift in the time domain algorithm
seems to be an odd approach. However, by choosing the
propagation constant and then exciting the system with a time
domain impulse provides correct results (after a Fourier
transform) only at the frequency at which this propagation
constant is valid. This step must then be repeated for different
propagation constants to obtain the dispersion curve for that
particular mode. Since this approach requires only a two-
dimensional mesh with a half-size space grid and since the
propagation constant is given as an input parameter, the
algorithm convergences much faster than in the conventional
approach and the memory space is reduced significantly.
Moreover, this approach can handle losses easily. To improve
the algorithm even further, we have included the technique for
the variable mesh size as described before.

The new approach follows the two-step leap-frog FDTD
procedure initially developed for a full sized three-dimensional
grid. When the field components are normalized by the free-
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Considering the arbitrary variable mesh as shown in
Fig.1f, the magnetic fields are arranged in the middle of the
mesh to have a second order accuracy when calculating the
magnetic fields via the electric fields. The mesh parameters pj
(i=1,2,...,M), qj (=1,2,..,N), and rk (k=1,2,...,K) are any
positive real number as required to resolve the specific structure.
s=c At/Ah , At and Ah are, respectively, the time and the space
steps. The mesh dimension is shown in Fig.1. If pj=constant
(i=1.2,...,M), gj=constant (j=1,2,...,N) and rk =constant
(k=1,2,...,K), the new mesh will be reduced to the same
rectangular one as in [10]. If all mesh parameters along the x-,
y-, and z-direction are set to unity, the mesh size will be
uniform.

After the mesh size has been made variable, a phase shift
rkBAh is now introduced at any adjacent nodes for any specific

propagation constant 3. This modal knowledge is now used to
simplify the scheme. It is easy to see that any incident or

reflected impulse for any propagation constant f satisfies [15]:
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Because the mesh in z-direction is closed in itself, the
mesh parameters are set to unity along this axis. The new
variable mesh algorithm can be written as
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Similarly for the other ficld components. From equ. (4)
it is obvious that now only a two-dimensional mesh is involved.
1j is the compensation factor related to the neighboring mesh
sizes similar to (1c). Since this process closes the z-direction in
itself, only a reduced space grid of half size remains (Fig.1f) and
no absorbing-wall or shorted-shielding is needed along the
propagation direction.The grid size in z-direction is arbitrary as
long as the transmission line is homogeneous in this direction.

The losses can be easily taken into consideration by
using the complex relative dielectric constant in the scheme. This
self-consistent approach applied in the new TDFD mesh holds
for any kind of losses and also for metallization dimensions
smaller, comparable or larger than the skin depth [16]. The



attenuation factor can be calculated from the Fourier
transformation of the impulse at a specific space point and at
different time steps after mode stability has been reached.

Numerical Results

To verify the accuracy of this new frequency selective
TDFD approach, we have first compared analytical results for
the air- and dielectric-filled rectangular waveguide with our
numerical calculations. The excellent agreement is demonstrated
in Fig.2. Here only the dominant mode is chosen as excitation.
For the Fourier transformation, the Blackman window has been
utilized because of its smooth shape [14].

To illustrate the advantages of the two-dimensional
variable mesh versus the uniform mesh, Fig.3 shows a
comparison for the calculation of the microstrip propagation
constant. The variable mesh used is shown in Fig.le. The
horizontal axis in Fig.3 denotes the mesh ratio, which equals
one for the limiting case of the uniform mesh. It is clearly seen
that up to a ratio of 4:1, the CPU time is only 5% of that of the
uniform mesh and the error is less than 1%.

To demonstrate the capability of this new approach we
have calculated the CPW and the microstrip conductor losses
(including ground plane losses) considering finite metallization
thickness and dielectric losses. The results are shown in Fig.4
and Fig.5 for very small conductor dimensions.

Conclusion

A 2-D TDFD variable or adaptive mesh with second
order accuracy for the full-wave analysis of inhomogeneous
transmission lines has been introduced. Together with only a
half-size space grid the memory space and CPU-time of the
TDFD has been reduced significantly. Introducing a phase shift
in axial direction and chosing the propagation constant as input
parameter, allows a frequency selective application of the TDFD.
This makes the TDFD a very efficient tool for practical CAD of
various complicated microwave circuits.
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